Friday 1 July 2011

Anomalies and discrepancies

Anomalies and discrepancies

There are some observations that are not adequately accounted for, which may point to the need for better theories of gravity or perhaps be explained in other ways.
Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). The discrepancy between the curves is attributed to dark matter.
  • Extra fast stars: Stars in galaxies follow a distribution of velocities where stars on the outskirts are moving faster than they should according to the observed distributions of normal matter. Galaxies within galaxy clusters show a similar pattern. Dark matter, which would interact gravitationally but not electromagnetically, would account for the discrepancy. Various modifications to Newtonian dynamics have also been proposed.
  • Pioneer anomaly: The two Pioneer spacecraft seem to be slowing down in a way which has yet to be explained.[20]
  • Flyby anomaly: Various spacecraft have experienced greater accelerations during slingshot maneuvers than expected.
  • Accelerating expansion: The metric expansion of space seems to be speeding up. Dark energy has been proposed to explain this. A recent alternative explanation is that the geometry of space is not homogeneous (due to clusters of galaxies) and that when the data are reinterpreted to take this into account, the expansion is not speeding up after all,[21] however this conclusion is disputed.[22]
  • Anomalous increase of the astronomical unit: Recent measurements indicate that planetary orbits are widening faster than if this were solely through the sun losing mass by radiating energy.
  • Extra energetic photons: Photons travelling through galaxy clusters should gain energy and then lose it again on the way out. The accelerating expansion of the universe should stop the photons returning all the energy, but even taking this into account photons from the cosmic microwave background radiation gain twice as much energy as expected. This may indicate that gravity falls off faster than inverse-squared at certain distance scales.[23]
  • Dark flow: Surveys of galaxy motions have detected a mystery dark flow towards an unseen mass. Such a large mass is too large to have accumulated since the Big Bang using current models and may indicate that gravity falls off slower than inverse-squared at certain distance scales.[23]
  • Extra massive hydrogen clouds: The spectral lines of the Lyman-alpha forest suggest that hydrogen clouds are more clumped together at certain scales than expected and, like dark flow, may indicate that gravity falls off slower than inverse-squared at certain distance scales.[23]

No comments:

Post a Comment